
circpy-rpipico
 Wednesday 14 January 2026  3 versions

1. CircuitPython with Raspberry-Pi-Pico and NeoPixel Matrices

1.1. Links to Online Resources

https://agmc26-mfhn.dortoka.ipv64.de/ 

2. Why do we use these parts?

2.1. Micro-Controllers

Raspberry-Pi-Pico:

boards are cheap and processors are fast
supported by many languages (C, Arduino, µPython, Rust, …)
Picos have a large eco system:

good documentation
used by many hobbyist

Model Processor RAM Flash Cores Clock speed WLAN

Pico RP2040 264KB 2MB 2x ARM Cortex-M0+ 133MHz no

Pico-W RP2040 264KB 2MB 2x ARM Cortex-M0+ 133MHz yes

Pico2 RP2350 520KB 4MB 2x ARM Cortex-M33 150MHz no

Pico2-W RP2350 520KB 4MB 2x ARM Cortex-M33 150MHz yes

 XLOG

https://agmc26-mfhn.dortoka.ipv64.de/
https://agmc26-mfhn.dortoka.ipv64.de/
https://agmc26-mfhn.dortoka.ipv64.de/
https://agmc26-mfhn.dortoka.ipv64.de/why
https://agmc26-mfhn.dortoka.ipv64.de/

2.2. CircuitPython vs. MicroPython

MicroPython (MPy) and CircuitPython (CPy) are closely related.
The Adafruit company is sponsoring CPy, which is a derivative of MPy.

The CPy interpreter uses only a small part of the on-board Flash memory
the other part is used as a FAT filesystem, which is
visible as an USB flash drive, named CIRCUITPY

CPy has a very large eco system of libraries (with documentation and examples)
CircuitPython documentation 
Adafruit libraries 
Community libraries 

Interpreter:
“fast enough”: usually no need for compiled programs
fast turn-around-times during development
CPy is “FUN” to use

2.3. 16x16 NeoPixel-Matrix

“NeoPixel” is a term created by Adafruit for “smart” RGB-LEDs.
They are usually based on WS2812B  chips.
See the “NeoPixel ÜberGuide”  for a detailed explanation.

all LEDs are pre-soldered to a flexible PCB: size is only 16cm by 16cm
all 256 “NeoPixels” are chained together (in a zigzag style)
NeoPixels can be driven with only 3 pins: +5V, GND and Data
NeoMatrices have an “affordable” price tag

https://agmc26-mfhn.dortoka.ipv64.de/examples
https://docs.circuitpython.org/en/latest/README.html
https://docs.circuitpython.org/en/latest/README.html
https://docs.circuitpython.org/en/latest/README.html
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/CircuitPython_Community_Bundle
https://github.com/adafruit/CircuitPython_Community_Bundle
https://github.com/adafruit/CircuitPython_Community_Bundle
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://learn.adafruit.com/adafruit-neopixel-uberguide/the-magic-of-neopixels
https://learn.adafruit.com/adafruit-neopixel-uberguide/the-magic-of-neopixels
https://learn.adafruit.com/adafruit-neopixel-uberguide/the-magic-of-neopixels

All resources can be be downloaded from the assets directory, as well.

2.4. Optional Enhancements

IKEA picture frames
16cm x 16cm LERBODA 
25cm x 25cm SANNAHED 
32cm x 32cm LOMVIKEN 

Hornbach
Diffusors made from “Grey Acrylic Glas”

3. How do you start?

3.1. Select a micro-controller Board

without WiFi and Bluetooth
RPi-Pico, RPi-Pico2
VCC-GND YD-RP2040
several boards by WaveShare

with WiFi and BLE
RPi-Pico-W, RPi-Pico2-W
several boards by Pimoroni

3.2. Download the matching Firmware

https://agmc26-mfhn.dortoka.ipv64.de/assets/NeoPixel/
https://www.ikea.com/de/de/p/lerboda-rahmen-silberfarben-60516307/
https://www.ikea.com/de/de/p/lerboda-rahmen-silberfarben-60516307/
https://www.ikea.com/de/de/p/lerboda-rahmen-silberfarben-60516307/
https://www.ikea.com/de/de/p/sannahed-rahmen-schwarz-60459118/
https://www.ikea.com/de/de/p/sannahed-rahmen-schwarz-60459118/
https://www.ikea.com/de/de/p/sannahed-rahmen-schwarz-60459118/
https://www.ikea.com/de/de/p/lomviken-rahmen-schwarz-00335852/
https://www.ikea.com/de/de/p/lomviken-rahmen-schwarz-00335852/
https://www.ikea.com/de/de/p/lomviken-rahmen-schwarz-00335852/
https://agmc26-mfhn.dortoka.ipv64.de/how

… from Adafruit’s CircuitPython “store”  at https://circuitpython.org/down… 

… or from the assets directory.

1. select your board
2. download the “latest” Firmware: “adafruit-circuitpython-manufacturer-boardname-version.UF2”
3. and save it to your PC

3.3. Install this Firmware to your Board

Read the installation notes in the Adafruit learn guide  .

Flash procedure:

1. insert USB cable into Board (but leave PC side unconnected!)
2. press BOOT button on Board
3. next, insert USB cable into your PC (and still keep the BOOT button pressed)
4. now, release the BOOT button
5. a new USB drive, called “RPI-RP2”, appears ("RP2350" for Pico2)
6. copy the appropriate “.UF2” file to the USB drive “RPI-RP2”
7. the Board reboots and USB drive “RPI-RP2” disappears
8. a new USB drive, called “CIRCUITPY”, appears
9. Finished!

3.4. Install additional Tools on your PC

1. install an Editor or IDE:

Thonny IDE 
MU Editor 

2. install Adafruit’s CIRCUP tool  to manage the Adafruit and Community libraries on your Board
3. use your PC’s Filemanager to explore and manage the files on the CIRCUITPY drive

3.5. Addon: Installation of MicroPython

Either get the firmware online  or from the assets directory.
Then follow the installation instructions in the quick-ref guide  .

4. What do you need?

Connect a NeoPixel cable to the Rapsberry-Pi-Pico:

https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://agmc26-mfhn.dortoka.ipv64.de/assets/CPy10/
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/circuitpython
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/circuitpython
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/circuitpython
https://thonny.org/
https://thonny.org/
https://thonny.org/
https://codewith.mu/
https://codewith.mu/
https://codewith.mu/
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://micropython.org/download/
https://micropython.org/download/
https://micropython.org/download/
https://agmc26-mfhn.dortoka.ipv64.de/assets/MPy/
https://docs.micropython.org/en/latest/rp2/quickref.html
https://docs.micropython.org/en/latest/rp2/quickref.html
https://docs.micropython.org/en/latest/rp2/quickref.html
https://agmc26-mfhn.dortoka.ipv64.de/what

Solder a 3-wire cable to pins 34, 38, and 40 of your Pico board.
The other end of this cable has a plug, which fits to the NeoPixel matrix.
(Detailed view of “Pico-W” boards with NeoPixel cables.)

4.1. Hardware

What Price

Pico board 5-10 €

USB cable 5 €

16x16 NeoPixel matrix 25-30 €

3 pin Data cable included with matrix

Sub total approx. 40 €

IKEA frame 10 €

acrylic diffusor 10 €

Grand total < 60€

4.2. Time & Tools

soldering iron + some solder
ruler + cutter knife
cordless drill + some drill inserts (3-12 mm)
approximately 1-2 hours

https://agmc26-mfhn.dortoka.ipv64.de/what
https://agmc26-mfhn.dortoka.ipv64.de/python

5. Short Introduction to Programming with Python

If you are new to programming with Python then you might have a look at the “Welcome To
CircuitPython”  guide by Adafruit. The chapter “How do I learn Python?”  has links to guides for
every level of experience.

Another guide “Getting Started with Raspberry Pi Pico and CircuitPython”  is dedicated to
programming Pico boards with CPy. The chapter “NeoPixel LEDs”  is very helpful for this workshop.

These guides can also be downloaded from the assets directory.

5.1. Structure of a CircuitPython program

1. import needed libraries (and methods)
2. define your global variables (and constants)
3. define (aka. develop) your own functions
4. initialize all needed objects
5. start the main loop

5.2. Control structures

Python does not use any explicit syntactic brackets (like begin and end , or { and }) to delimit
compound statements.
That’s why indentation (usually by 4 spaces) is used to group statements.

Python does have most of the usual control structures.
But you need to terminate the ’test’ with a colon : .

 1 # IF statement
 2 if (a == b):
 3 x = y
 4 elif (b == c):
 5 x = z
 6 else:
 7 z = x +y
 8
 9 # WHILE statement
10 i = 0
11 while (i < 10):
12 i += 1
13
14 # FOR statement
15 for j in range(10):
16 print(j)

https://agmc26-mfhn.dortoka.ipv64.de/python
https://agmc26-mfhn.dortoka.ipv64.de/python
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/how-do-i-learn-python
https://learn.adafruit.com/welcome-to-circuitpython/how-do-i-learn-python
https://learn.adafruit.com/welcome-to-circuitpython/how-do-i-learn-python
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/neopixel-leds
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/neopixel-leds
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/neopixel-leds
https://agmc26-mfhn.dortoka.ipv64.de/assets/Python/
https://agmc26-mfhn.dortoka.ipv64.de/python
https://agmc26-mfhn.dortoka.ipv64.de/why
https://agmc26-mfhn.dortoka.ipv64.de/python

5.3. Function definitions

The same is true for function definitions.
Put the name and all parameters onto the first line and terminate the line with a colon : .
Then you need to indent all statements of the function body.
The function definition ends, when you outdent to the level of the def keyword.

1 # Function defintion
2 def fname(x, y, z):
3 return x * y * z
4
5 print(fname(2, 3, 5))

5.4. Data types

Python does have all the usual data types, like integers, floats and strings.
Some conversions are done implicitly. Others need to be carried out explicitly by calling a function.

1 a, b = 5, 7
2 x, y = 9.7, 6.5
3 z = float(a + b)
4 c = int(x / y)
5 s = "my "
6 t = " know"
7 r = "ledge"
8 print(z, c, s+t+r)

5.5. Data structures

The basic data structures of Python are lists, dictionaries, and tuples:

1 # LISTS have indices that are integers and can be used as ARRAYS
2 # delimiters are [and]
3 a = [1, 2, 3,]
4 rgb = [0xff, 0xcc, 0xd8]
5 b = ['a', 12, 3.14, [], rgb]
6 print(a[1], b[4])

1 # DICTIONARIES are similar to LISTS,
2 # except the indices are strings (or any other type)
3 # delimiters are { and }
4 word = {}
5 word['en'] = 'book'
6 word['de'] = 'buch'

https://agmc26-mfhn.dortoka.ipv64.de/python
https://agmc26-mfhn.dortoka.ipv64.de/python

7 word['fr'] = 'livre'
8 words = { 'one': 'eins', 'two': 'due', 'three': 'trois', }

1 # TUPLES are an immutable sequence of values
2 # delimiters are (and)
3 t = (1, 2, 3, 4, 5)
4 print(t[2])

6. A few Examples

All Examples can also be downloaded from the assets directory.

6.1. Hello world!

6.1.1. Blink

SPDX-FileCopyrightText: 2025 Pagong
SPDX-License-Identifier: MIT

import time
import board
import neopixel

#######################

for Rpi-Pico with 16x16 NeoPixel-Matrix
NUM_COLS = 16
NUM_CELLS = 16
NUM_PIXELS = (NUM_COLS * NUM_CELLS) # Update this to match the number of LEDs.

SPEED = 0.1 # Increase to slow down the effect. Decrease to speed it up.
BRIGHTNESS = 0.1 # A number between 0.0 and 1.0, where 0.0 is off, and 1.0 is max.

PIN = board.GP28 # This is the default pin on my RPi-Pico with 16x16 NeoPixel matrix
pixels = neopixel.NeoPixel(PIN, NUM_PIXELS, brightness=BRIGHTNESS, auto_write=False)

#####################

black = 0
color = (0xff, 0xcc, 0xd8)

while True:
 pixels.fill(black)
 pixels.show()
 time.sleep(5*SPEED)

https://agmc26-mfhn.dortoka.ipv64.de/examples
https://agmc26-mfhn.dortoka.ipv64.de/examples
https://agmc26-mfhn.dortoka.ipv64.de/assets/Code/

 pixels.fill(color)
 pixels.show()
 time.sleep(SPEED)

6.1.2. Rainbow

SPDX-FileCopyrightText: 2025 Pagong
SPDX-License-Identifier: MIT

import time
import board
import neopixel
import rainbowio

#######################

for Rpi-Pico with 16x16 NeoPixel-Matrix
NUM_COLS = 16
NUM_CELLS = 16
NUM_PIXELS = (NUM_COLS * NUM_CELLS) # Update this to match the number of LEDs.

SPEED = 0.01 # Increase to slow down the effect. Decrease to speed it up.
BRIGHTNESS = 0.1 # A number between 0.0 and 1.0, where 0.0 is off, and 1.0 is max.

PIN = board.GP28 # This is the default pin on my RPi-Pico with 16x16 NeoPixel matrix
pixels = neopixel.NeoPixel(PIN, NUM_PIXELS, brightness=BRIGHTNESS, auto_write=False)

#####################

black = 0

while True:
 pixels.fill(black)
 pixels.show()
 time.sleep(50*SPEED)

 for i in range(NUM_PIXELS):
 for j in range(NUM_PIXELS):
 color = rainbowio.colorwheel(i+j)
 pixels[j] = color
 pixels.show()
 time.sleep(SPEED)

6.2. 2D Matrices

6.2.1. Sinus

move through Sinus and Cosinus terrain
#
21 Mar 2025 - @pagong
Uses Raspberry-Pi Pico with a 16x16 NeoPixel LED matrix

import time
import board
import random
import neopixel
import rainbowio

import neomatrix

#####################

for RPi-Pico with 16x16 NeoPixel-Matrix
NUM_COLS = 16
NUM_CELLS = 16

NUM_PIXELS = (NUM_COLS * NUM_CELLS) # Update this to match the number of LEDs.
SPEED = 0.01 # Increase to slow down the animation. Decrease to speed it up.
BRIGHTNESS = 0.1 # A number between 0.0 and 1.0, where 0.0 is off, and 1.0 is max.
PIN = board.GP28 # This is the default pin on RPi-Pico with 16x16 NeoPixel matrix

leds = neopixel.NeoPixel(PIN, NUM_PIXELS, brightness=BRIGHTNESS,
 pixel_order=neopixel.GRB, auto_write=False)

matrixType = (neomatrix.NEO_MATRIX_BOTTOM + neomatrix.NEO_MATRIX_LEFT +
 neomatrix.NEO_MATRIX_ROWS + neomatrix.NEO_MATRIX_ZIGZAG)

matrix = neomatrix.NeoMatrix(
 leds,
 NUM_COLS, NUM_CELLS,
 1, 1,
 matrixType,
)

grid = matrix._grid

#####################

prepare rainbow palette
palette = []
for k in range(256):
 palette.append(rainbowio.colorwheel(k))

change direction of movement
def change_direction():
 xs, ys = 0, 0
 while (abs(xs) + abs(ys) == 0):
 xs = random.randint(-1, 1)
 ys = random.randint(-1, 1)
 return float(xs), float(ys)

def do_frame():
 for i in range(NUM_COLS): # for each pixel row
 sinx = math.sin(start_x + step*i)
 pxl = grid[i]
 for j in range(NUM_CELLS): # for each pixel column
 cosy = math.cos(start_y + step*j)
 val = 1.0 + (sinx * cosy)
 col = int(val * 127.5) # scale it from -1 - +1 -> 0 - 255
 pxl[j] = palette[col] # convert hue to rainbow color

#####################

import math
step = (1.1 * math.pi) / float(NUM_COLS)
start_x = 0.0
start_y = 0.0

incr = 0.1
xsign = 0.0
ysign = 1.0

Debug = True

while True:
 t1 = time.monotonic_ns()
 do_frame()
 t2 = time.monotonic_ns()

 grid.show()
 t3 = time.monotonic_ns()

 if Debug:
 d1 = (t2 - t1) / 1000000.0
 print(f"Compute {d1} ms", end=" +\t")
 d2 = (t3 - t2) / 1000000.0
 print(f"Display {d2} ms", end=" =\t")
 print(f"Total {d1+d2} ms", end=" -->\t")
 print(f"{1000.0/(d1+d2)} fps")

 # move around in 2D space
 start_x += incr * xsign
 start_y += incr * ysign
 if (random.randint(0, 99) == 8):
 xsign, ysign = change_direction()

 time.sleep(SPEED)

6.2.2. Berlin-Uhr

Program code of Berlin-Uhr 

6.3. Further Examples

see my Github account for more: https://github.com/pagong 

NeoMatrix 
Demos 
Berlin-Uhr 

https://agmc26-mfhn.dortoka.ipv64.de/assets/Code/berlin16.py
https://agmc26-mfhn.dortoka.ipv64.de/assets/Code/berlin16.py
https://agmc26-mfhn.dortoka.ipv64.de/assets/Code/berlin16.py
https://agmc26-mfhn.dortoka.ipv64.de/examples
https://github.com/pagong
https://github.com/pagong
https://github.com/pagong
https://github.com/pagong/CircuitPython_NeoMatrix
https://github.com/pagong/CircuitPython_NeoMatrix
https://github.com/pagong/CircuitPython_NeoMatrix
https://github.com/pagong/cpy9-rp2040-demos
https://github.com/pagong/cpy9-rp2040-demos
https://github.com/pagong/cpy9-rp2040-demos
https://github.com/pagong/CircuitPython_NeoMatrix/blob/main/examples/berlin/berlin16.py
https://github.com/pagong/CircuitPython_NeoMatrix/blob/main/examples/berlin/berlin16.py
https://github.com/pagong/CircuitPython_NeoMatrix/blob/main/examples/berlin/berlin16.py

6.3.1. Domino Clock

7. Backlinks

index Friday 30 January 2026

https://agmc26-mfhn.dortoka.ipv64.de/index

