XLOG

circpy-rpipico

© Wednesday 14 January 2026 ¥ 3 versions

CircuitPython with Raspberry-Pi-Pico and NeoPixel Matrices

Links to Online Resources

https://agmc26-mfhn.dortoka.ipv64.de/ (4

Why do we use these parts?

Micro-Controllers

Raspberry-Pi-Pico:

e boards are cheap and processors are fast

 supported by many languages (C, Arduino, pPython, Rust, ...)

e Picos have a large eco system:

o good documentation

o used by many hobbyist

Model

Pico

Pico-W

Pico2

Pico2-W

Processor

RP2040

RP2040

RP2350

RP2350

RAM

264KB

264KB

520KB

520KB

Flash

2MB

2MB

4MB

4MB

Cores

2x ARM Cortex-MO+

2X ARM Cortex-MO+

2x ARM Cortex-M33

2x ARM Cortex-M33

Clock speed
133MHz
133MHz
150MHz

150MHz

WLAN

no

yes

no

yes


https://agmc26-mfhn.dortoka.ipv64.de/
https://agmc26-mfhn.dortoka.ipv64.de/
https://agmc26-mfhn.dortoka.ipv64.de/
https://agmc26-mfhn.dortoka.ipv64.de/why
https://agmc26-mfhn.dortoka.ipv64.de/

12c050A § spiorx | GPo__ ]
12coscL § spiocsn B GP1_I¥)
T 3

4“0 ‘.’EUS
39
»

12c0SDA | sPiorx | 6RO ]
12coscL § spiocsn | cp1 Rl
[_ono [

= veus |

k] vsvs |
3 IS

| i2c1 s0a | sPiosck | GP2 it} k1) | i2c1spA § spiosck | G2 I 3
| 2ciscLf spiorx Jcrs I £ avsoun | | 2ciscL] spiorx | cps B £ svaioun |
JuarT x| ico spA | seiorx | cpa I3 £ uarri ] i2cosoa | seiorx | —cea I3 3
Luartirx ] izcoscL ] seiocsn | GPs I 3 I T uarm Rx ] icosct § siocsn §cps R Ecpa ) anco |
[_cno B oo ] acho | |_cno [ E] oo ] acho |
| 12c15pA | sPiosck | —GPs U] 2 I S PR [ 12c1s0A ] spiosck 6P J) 4 cpoz ] aoc ] iaciscL]
[ i2c1scL ) sPiorx | cpz R kil cPae ] Aoco ] i2cispA | [ i2ciscL ] spioTx | cP7 BT kil cPae ] Aoco ] 12C1 SDA |
uarT1Tx | i2cosoa | spi rx | —Gra_ Rl 30 uar x| izcosoa §spiirx | —GPe Rl 30
JuarT1 RX | i2coscL ] spitcsn §GRoRiFS 2 I LuarT1 RX | i2coscL | spiicsn | GPo BT 2 T
oo RS ] oo | |_ono B el oo |
| 12c1sDA § sPiisck | GPio BT 771 A | 12c1sDA § sPiisck | GPio BT = I
[ i2c1scL | spiiTx §cpin B4 2% I [ 2c1scL ] seiiTx | cpin BH % T
uarToTx ] i2cosoa | seii x| cpiz BT ] cpio ] seiorx ] iaciscL ] LuartoTx | izcospa | seirx | —GPi2 Rl 2] cpio ] seiorx ] i2ciscL]
LuarTORX | 12c0 scL | spPi1csn - GP13 i) [24GP18 ] spiosck J 121 DA | LuarTORX J 12c0SCL | spitcsn | GP13 Rird [ GP18 ] spiosck | 12¢1SDA |
|_cvo RO 23 TN |_cno BT 2 T
| i2c1 s0A ] seiisck | cpia HH 24 ez spiocsn | i2coscL J uaRToRx ] i2c1 soad seiisck | cpia BT -4 P17 seiocsn | i2co st J uaRTORX ]
S TR I 2 P—Gric—T-sPokRxJi2cosoa T UaRTo ] [izcisci ] sei x| cpis ]

f20 6P16 | spiorx | 12c0 SDA | UARTO TX

| swork L oo ] swoio |

W Power W Ground B UART/UART (defauly [l GPIC, PIO, and PWM W Power

W Aoc

W Ground B UART/ UART (default)

W »Aoc H se W Debugging W c H sr

2.2. CircuitPython vs. MicroPython

MicroPython (MPy) and CircuitPython (CPy) are closely related.
The Adafruit company is sponsoring CPy, which is a derivative of MPy.

o The CPy interpreter uses only a small part of the on-board Flash memory
o the other part is used as a FAT filesystem, which is
o visible as an USB flash drive, named CIRCUITPY
e CPy has a very large eco system of libraries (with documentation and examples)
o CircuitPython documentation (4
o Adafruit libraries (3
o Community libraries (4
o Interpreter:
o “fast enough”: usually no need for compiled programs
o fast turn-around-times during development
o CPyis “FUN’ to use

2.3.16%16 NeoPixel-Matrix

“NeoPixel” is a term created by Adafruit for “smart” RGB-LEDs.
They are usually based on WS2812B (4 chips.
See the “NeoPixel UberGuide” (2 for a detailed explanation.

 all LEDs are pre-soldered to a flexible PCB: size is only 16cm by 16¢cm
o all 256 “NeoPixels” are chained together (in a zigzag style)

» NeoPixels can be driven with only 3 pins: +5V, GND and Data

» NeoMatrices have an “affordable” price tag

W


https://agmc26-mfhn.dortoka.ipv64.de/examples
https://docs.circuitpython.org/en/latest/README.html
https://docs.circuitpython.org/en/latest/README.html
https://docs.circuitpython.org/en/latest/README.html
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/CircuitPython_Community_Bundle
https://github.com/adafruit/CircuitPython_Community_Bundle
https://github.com/adafruit/CircuitPython_Community_Bundle
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://learn.adafruit.com/adafruit-neopixel-uberguide/the-magic-of-neopixels
https://learn.adafruit.com/adafruit-neopixel-uberguide/the-magic-of-neopixels
https://learn.adafruit.com/adafruit-neopixel-uberguide/the-magic-of-neopixels

i e |
e -

a2

=

B

.
[

|

|

-]

o
i i
il |
B W
==

All resources can be be downloaded from the assets directory, as well.

Optional Enhancements

» IKEA picture frames
o 16cm x 16cm LERBODA (4
o 25cm x 25cm SANNAHED 2
o 32cm x 32cm LOMVIKEN (2
e Hornbach
o Diffusors made from “Grey Acrylic Glas

n

How do you start?

Select a micro-controller Board

« without WiFi and Bluetooth

o RPi-Pico, RPi-Pico2

o VCC-GND YD-RP2040

o several boards by WaveShare
e with WiFi and BLE

o RPi-Pico-W, RPi-Pico2-W

o several boards by Pimoroni

Download the matching Firmware


https://agmc26-mfhn.dortoka.ipv64.de/assets/NeoPixel/
https://www.ikea.com/de/de/p/lerboda-rahmen-silberfarben-60516307/
https://www.ikea.com/de/de/p/lerboda-rahmen-silberfarben-60516307/
https://www.ikea.com/de/de/p/lerboda-rahmen-silberfarben-60516307/
https://www.ikea.com/de/de/p/sannahed-rahmen-schwarz-60459118/
https://www.ikea.com/de/de/p/sannahed-rahmen-schwarz-60459118/
https://www.ikea.com/de/de/p/sannahed-rahmen-schwarz-60459118/
https://www.ikea.com/de/de/p/lomviken-rahmen-schwarz-00335852/
https://www.ikea.com/de/de/p/lomviken-rahmen-schwarz-00335852/
https://www.ikea.com/de/de/p/lomviken-rahmen-schwarz-00335852/
https://agmc26-mfhn.dortoka.ipv64.de/how

... from Adafruit’s CircuitPython “store” (2 at https://circuitpython.org/down... 4
..or from the assets directory.

1. select your board
2. download the “latest” Firmware: “adafruit-circuitpython-manufacturer-boardname-version.UF2"

3. and save it to your PC

Install this Firmware to your Board

Read the installation notes in the Adafruit learn guide (7 .
o Flash procedure:

. insert USB cable into Board (but leave PC side unconnected!)

. press BOOT button on Board

. next, insert USB cable into your PC (and still keep the BOOT button pressed)
. how, release the BOOT button

. a new USB drive, called “RPI-RP2", appears ("RP2350" for Pico2)

. copy the appropriate “UF2” file to the USB drive “RPI-RP2”

. the Board reboots and USB drive “RPI-RP2” disappears

. a new USB drive, called “CIRCUITPY”, appears

. Finished!

© 00 N O o b W N =

Install additional Tools on your PC

1. install an Editor or IDE:

o Thonny IDE (4

« MU Editor (2
2. install Adafruit’s CIRCUP tool (Z to manage the Adafruit and Community libraries on your Board
3. use your PC’s Filemanager to explore and manage the files on the CIRCUITPY drive

Addon: Installation of MicroPython

Either get the firmware online (2 or from the assets directory.
Then follow the installation instructions in the quick-ref guide 7 .

What do you need?

Connect a NeoPixel cable to the Rapsberry-Pi-Pico:


https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://agmc26-mfhn.dortoka.ipv64.de/assets/CPy10/
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/circuitpython
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/circuitpython
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/circuitpython
https://thonny.org/
https://thonny.org/
https://thonny.org/
https://codewith.mu/
https://codewith.mu/
https://codewith.mu/
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://micropython.org/download/
https://micropython.org/download/
https://micropython.org/download/
https://agmc26-mfhn.dortoka.ipv64.de/assets/MPy/
https://docs.micropython.org/en/latest/rp2/quickref.html
https://docs.micropython.org/en/latest/rp2/quickref.html
https://docs.micropython.org/en/latest/rp2/quickref.html
https://agmc26-mfhn.dortoka.ipv64.de/what

e Solder a 3-wire cable to pins 34, 38, and 40 of your Pico board.
The other end of this cable has a plug, which fits to the NeoPixel matrix.
(Detailed view of “Pico-W" boards with NeoPixel cables.)

T 0
X O
ox o
D
QD
“ QD
e
o xn
e e Lo
X D
D,

4.1. Hardware

What Price
Pico board 5-10 €
USB cable 5€

16x16 NeoPixel matrix 25-30 €

3 pin Data cable included with matrix
Sub total approx. 40 €

IKEA frame 10 €

acrylic diffusor 10 €

Grand total < 60€

4.2.Time & Tools

» soldering iron + some solder
e ruler + cutter knife
e cordless drill + some drill inserts (3-12 mm)

e approximately 1-2 hours


https://agmc26-mfhn.dortoka.ipv64.de/what
https://agmc26-mfhn.dortoka.ipv64.de/python

Short Introduction to Programming with Python

If you are new to programming with Python then you might have a look at the “Welcome To
CircuitPython” (2 guide by Adafruit. The chapter “How do | learn Python?” (2 has links to guides for
every level of experience.

Another guide “Getting Started with Raspberry Pi Pico and CircuitPython” (4 is dedicated to
programming Pico boards with CPy. The chapter “NeoPixel LEDs” (7 is very helpful for this workshop.

These guides can also be downloaded from the assets directory.

Structure of a CircuitPython program

. import needed libraries (and methods)

. define your global variables (and constants)
. define (aka. develop) your own functions

. initialize all needed objects

a b~ 0N -

. start the main loop

Control structures

Python does not use any explicit syntactic brackets ( like begin and end ,or { and } ) to delimit
compound statements.
That's why indentation (usually by 4 spaces) is used to group statements.

Python does have most of the usual control structures.
But you need to terminate the ‘test’ with a colon

if (a == b):
X =Yy
elif (b == c):
X =z

else:

Z = X +y

for j in range(10):
print(3j)



https://agmc26-mfhn.dortoka.ipv64.de/python
https://agmc26-mfhn.dortoka.ipv64.de/python
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/how-do-i-learn-python
https://learn.adafruit.com/welcome-to-circuitpython/how-do-i-learn-python
https://learn.adafruit.com/welcome-to-circuitpython/how-do-i-learn-python
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/neopixel-leds
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/neopixel-leds
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/neopixel-leds
https://agmc26-mfhn.dortoka.ipv64.de/assets/Python/
https://agmc26-mfhn.dortoka.ipv64.de/python
https://agmc26-mfhn.dortoka.ipv64.de/why
https://agmc26-mfhn.dortoka.ipv64.de/python

Function definitions

The same is true for function definitions.

Put the name and all parameters onto the first line and terminate the line with a colon
Then you need to indent all statements of the function body.

The function definition ends, when you outdent to the level of the def keyword.

def fname(x, y, z):

return x * y * z

print( fname(2, 3, 5) )

Data types

Python does have all the usual data types, like integers, floats and strings.
Some conversions are done implicitly. Others need to be carried out explicitly by calling a function.

=5, 7
=9.7, 6.5
= float( a + b )

int( x /y)
"my "
" know"
"ledge"

print(z, c, s+t+r)

Data structures

The basic data structures of Python are lists, dictionaries, and tuples:

[ 1, 2, 3, ]

= [ exff, Oxcc, oxd8 ]

[ "a', 12, 3.14, [], rgb ]
print( a[1], b[4] )

word = {}
word[ ‘en"]
word[ 'de"]



https://agmc26-mfhn.dortoka.ipv64.de/python
https://agmc26-mfhn.dortoka.ipv64.de/python

word['fr'] = 'livre'

words = { 'one': ' !

'eins', 'two': 'due', 'three': 'trois', }

t=(1,2,3,4,5)
print( t[2] )

A few Examples

All Examples can also be downloaded from the assets directory.

Hello world!

Blink

# SPDX-FileCopyrightText: 2025 Pagong
# SPDX-License-Identifier: MIT

import time
import board
import neopixel

S A AT AT

# for Rpi-Pico with 16x16 NeoPixel-Matrix
NUM_COLS = 16

NUM_CELLS = 16

NUM_PIXELS = (NUM_COLS * NUM_CELLS) # Update this to match the number of LEDs.

SPEED = 0.1 # Increase to slow down the effect. Decrease to speed it up.
BRIGHTNESS = 0.1 # A number between 0.0 and 1.9, where 0.0 is off, and 1.0 is max.

PIN = board.GP28 # This is the default pin on my RPi-Pico with 16x16 NeoPixel matrix
pixels = neopixel.NeoPixel(PIN, NUM_PIXELS, brightness=BRIGHTNESS, auto_write=False)

WU

black
color

0
( oxff, @xcc, oxd8 )

while True:
pixels.fill(black)
pixels.show()
time.sleep(5*SPEED)


https://agmc26-mfhn.dortoka.ipv64.de/examples
https://agmc26-mfhn.dortoka.ipv64.de/examples
https://agmc26-mfhn.dortoka.ipv64.de/assets/Code/

pixels.fill(color)
pixels.show()
time.sleep(SPEED)

Rainbow

# SPDX-FileCopyrightText: 2025 Pagong
# SPDX-License-Identifier: MIT

import time
import board
import neopixel
import rainbowio

B R R S R S

# for Rpi-Pico with 16x16 NeoPixel-Matrix

NUM_COLS = 16

NUM_CELLS = 16

NUM_PIXELS = (NUM_COLS * NUM_CELLS) # Update this to match the number of LEDs.

SPEED = 0.01 # Increase to slow down the effect. Decrease to speed it up.
BRIGHTNESS = 0.1 # A number between 0.0 and 1.9, where 0.0 is off, and 1.0 is max.

PIN = board.GP28 # This is the default pin on my RPi-Pico with 16x16 NeoPixel matrix
pixels = neopixel.NeoPixel(PIN, NUM_PIXELS, brightness=BRIGHTNESS, auto_write=False)

T
black = @

while True:
pixels.fill(black)
pixels.show()
time.sleep(50*SPEED)

for i in range(NUM_PIXELS):
for j in range(NUM_PIXELS):
color = rainbowio.colorwheel(i+j)
pixels[j] = color
pixels.show()
time.sleep(SPEED)

2D Matrices

Sinus



# move through Sinus and Cosinus terrain

#

# 21 Mar 2025 - @pagong

# Uses Raspberry-Pi Pico with a 16x16 NeoPixel LED matrix

import time
import board
import random
import neopixel
import rainbowio

import neomatrix
FHEFH USSR
# for RPi-Pico with 16x16 NeoPixel-Matrix

NUM_COLS 16
NUM_CELLS = 16

NUM_PIXELS = (NUM_COLS * NUM_CELLS) # Update this to match the number of LEDs.
SPEED = 0.01 # Increase to slow down the animation. Decrease to speed it up.
BRIGHTNESS = 0.1 # A number between 0.0 and 1.9, where 0.0 is off, and 1.0 is max.
PIN = board.GP28 # This is the default pin on RPi-Pico with 16x16 NeoPixel matrix

leds = neopixel.NeoPixel(PIN, NUM_PIXELS, brightness=BRIGHTNESS,
pixel_order=neopixel.GRB, auto_write=False)

matrixType = ( neomatrix.NEO_MATRIX_BOTTOM + neomatrix.NEO_MATRIX_LEFT +
neomatrix.NEO_MATRIX_ROWS + neomatrix.NEO_MATRIX_ZIGZAG )

matrix = neomatrix.NeoMatrix(
leds,
NUM_COLS, NUM_CELLS,
i, dlg
matrixType,

grid = matrix._grid

SR

# prepare rainbow palette

palette = []

for k in range(256):
palette.append(rainbowio.colorwheel(k))

# change direction of movement
def change_direction():
XS, ys = 0, 0
while (abs(xs) + abs(ys) == 0):
xs = random.randint(-1, 1)
ys = random.randint(-1, 1)
return float(xs), float(ys)



def do_frame():
for i in range(NUM_COLS): # for each pixel row

sinx = math.sin(start_x + step*i)

pxl = grid[i]

for j in range(NUM_CELLS): # for each pixel column
cosy = math.cos(start_y + step*j)
val = 1.0 + (sinx * cosy)
col = int(val * 127.5) # scale it from -1 - +1 -> @ - 255
px1[j] = palette[col] # convert hue to rainbow color

B e e e

import math

step = (1.1 * math.pi) / float(NUM_COLS)
start_x = 0.0

start_y = 0.0

incr = 0.1

xsign = 0.0
ysign = 1.0
Debug = True

while True:
t1 = time.monotonic_ns()
do_frame()
t2 = time.monotonic_ns()

grid.show()
t3 = time.monotonic_ns()

if Debug:
dl = (t2 - t1) / 1000000.0
print(f"Compute {d1} ms", end=" +\t")
d2 = (t3 - t2) / 1000000.0
print(f"Display {d2} ms", end=" =\t")
print(f"Total {d1+d2} ms", end=" -->\t")
print(f"{1000.0/(d1+d2)} fps")

# move around in 2D space

start_x += incr * xsign

start_y += incr * ysign

if (random.randint(@, 99) == 8):
xsign, ysign = change_direction()

time.sleep(SPEED)

Berlin-Uhr



Program code of Berlin-Uhr (3

Berlin Uhr 25A -9

Further Examples

see my Github account for more: https://github.com/pagong (4

e NeoMatrix (4
e Demos (4
e Berlin-Uhr 2


https://agmc26-mfhn.dortoka.ipv64.de/assets/Code/berlin16.py
https://agmc26-mfhn.dortoka.ipv64.de/assets/Code/berlin16.py
https://agmc26-mfhn.dortoka.ipv64.de/assets/Code/berlin16.py
https://agmc26-mfhn.dortoka.ipv64.de/examples
https://github.com/pagong
https://github.com/pagong
https://github.com/pagong
https://github.com/pagong/CircuitPython_NeoMatrix
https://github.com/pagong/CircuitPython_NeoMatrix
https://github.com/pagong/CircuitPython_NeoMatrix
https://github.com/pagong/cpy9-rp2040-demos
https://github.com/pagong/cpy9-rp2040-demos
https://github.com/pagong/cpy9-rp2040-demos
https://github.com/pagong/CircuitPython_NeoMatrix/blob/main/examples/berlin/berlin16.py
https://github.com/pagong/CircuitPython_NeoMatrix/blob/main/examples/berlin/berlin16.py
https://github.com/pagong/CircuitPython_NeoMatrix/blob/main/examples/berlin/berlin16.py

6.3.1. Domino Clock

7. Backlinks

e index Friday 30 January 2026



https://agmc26-mfhn.dortoka.ipv64.de/index

